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ABSTRACT 

The scientific simulation capabilities of next generation high-end 
computing technology will depend on striking a balance among 
memory, processor, I/O, and local and global network 
performance across the breadth of the scientific simulation space. 
The Cray XT4 combines commodity AMD dual core Opteron 
processor technology with the second generation of Cray’s custom 
communication accelerator in a system design whose balance is 
claimed to be driven by the demands of scientific simulation. This 
paper presents an evaluation of the Cray XT4 using micro-
benchmarks to develop a controlled understanding of individual 
system components, providing the context for analyzing and 
comprehending the performance of several petascale-ready 
applications. Results gathered from several strategic application 
domains are compared with observations on the previous 
generation Cray XT3 and other high-end computing systems, 
demonstrating performance improvements across a wide variety of 
application benchmark problems.  

Categories and Subject Descriptors 

C.4 [Performance of Systems] Measurement techniques & 

Performance attributes. C.5.1 [Large and Medium (“Mainframe”) 
Computers] Supercomputers. 

General Terms 

Measurement, Performance. 

Keywords 

Cray XT4, HPCC, IOR, AORSA, CAM, NAMD, POP, S3D. 

1. INTRODUCTION 
In our quest to develop the capability for petascale scientific 
simulation for both long-term strategic and economic advantage, 
we face numerous challenges. The suitability of next generation 
high performance computing technology for petascale simulations 
will depend on balance among memory, processor, I/O, and local 
and global network performance. As we approach technological 
“event horizons” in memory latency, processor core performance, 
I/O bandwidth, and network latency and bandwidth, achieving 
system balance becomes ever more difficult. In this context, we 
present an evaluation of the Cray XT4 computer system. We use 
micro-benchmarks to develop a controlled understanding of 
individual system components, and then use this understanding to 
analyze and interpret the performance of several petascale-ready 
applications. 

2. CRAY XT4 COMPUTER SYSTEM AND 

SOFTWARE OVERVIEW 
The Cray XT4 is an evolutionary descendant of the Cray XT3 line 
of supercomputers, upgrading the processor, memory, and 
network technologies and preparing the architecture for additional 
on-site technology upgrades. We begin with a description of the 
XT3. 

Designed in collaboration with Sandia National Laboratory under 
the RedStorm project [1][2], the Cray XT3 [3][4][5] has been 
called Cray’s third generation of massively parallel processor 
(MPP) supercomputers, following the lineage of the Cray T3D 
and T3E systems. The machine was designed around the AMD 
Opteron processor, a scalable custom interconnect (Cray SeaStar), 
and a light-weight kernel (LWK) operating system, Catamount.  

The AMD Opteron 100-series processor was selected for the Cray 
XT3 system because it provides good floating point performance 
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with high memory bandwidth and low memory latency. A 
compelling feature of the AMD Opteron architecture over 
competing processors is AMD’s HyperTransport (HT) 
specification. HT technology is an open standard for 
communicating directly with the CPU, which allows Cray to 
connect the Opteron processor directly to the SeaStar network. 
AMD also moved the memory controller from a separate 
NorthBridge chip to the CPU die, which reduces both complexity 
and latency. By choosing the 100-series (single CPU) parts rather 
than the 200- (dual CPU SMP) or 800- (quad CPU SMP) series 
parts, Cray was able to further reduce the memory latency to less 
than 60ns by removing the added latency of memory coherency. 
[5][6] 

The Cray SeaStar interconnect is a custom, 3D toroidal network 
designed to provide very high bandwidth and reliability. The 
SeaStar NIC has a PowerPC 440 processor with a DMA engine 
onboard to reduce the network load on the Opteron processor. 
Each NIC has six links with a peak bidirectional bandwidth of 
7.6GB/s and a sustained bidirectional bandwidth of more than 
6GB/s. The network links actually exceed the HT bandwidth with 
the Opteron processors, ensuring that one node is not capable of 
completely saturating the network bandwidth. 

It was deemed critical when designing the Cray XT3 system that 
the OS should minimize interruptions to the running applications 
(“OS jitter”). Thus, while the XT3 service and login nodes run a 
complete Linux-based OS, the compute nodes run a microkernel 
OS. This combination of operating systems is called UNICOS/lc 
(Linux-Catamount). Catamount was initially developed by Sandia 
National Laboratory to support scaling the Cray XT3/RedStorm 
system to many thousands of processors. RedStorm’s Catamount 
supported just one thread of execution per node and reduced 
signal handling to minimize interrupts. Additionally, it took 
advantage of the single thread of execution to streamline memory 
management. To enable the use of dual-core Opterons, “virtual 
node” (VN) support was added. In VN mode, the node’s memory 
is divided evenly between the cores. However, the VN mode 
design is inherently asymmetric, with only one core handling 
system interrupts and NIC access, leading to the potential for 
imbalance in per-core performance. In particular, in the current 
MPI [7] implementation, one core is responsible for all message 
passing, with the other core interrupting it to handle messages on 
its behalf. Messages between two cores on the same socket are 
handled through a memory copy. The XT nodes can also be run in 
“single/serial node” (SN) mode, in which only one core is used 
but has full access to all of the node’s memory and the NIC.  

Cray XT4 compute blades fit into the same cabinet and connect to 
the same underlying Cray SeaStar network as the Cray XT3, 
allowing both XT3 and XT4 compute blades to co-exist within 
the same system. Three major differences exist between the XT3 
and XT4 systems. First, the AMD Socket 939 Revision E Opteron 
processors have been replaced with the newer AMD AM2 Socket 
Revision F Opteron. This socket change was critical to ensure that 
dual-core XT4 systems can be site-upgraded to quad-core 
processors, just as the original single-core XT3 could be site-
upgraded to dual core. The AMD Revision F Opteron includes a 
new integrated memory controller with support for DDR2 RAM. 
The upgrade from DDR to DDR2 memory is the second major 
difference between the XT3 and XT4 systems. When the Cray 
XT3 migrated from single to dual core, there was no change to 

memory bandwidth to match the additional processor core. By 
upgrading to DDR2 memory, the effective memory bandwidth to 
each processor core improves from 6.4GB/s for DDR-400 
memory to 10.6GB/s for DDR2-667 memory and 12.8GB/s for 
DDR2-800 memory. Finally, XT4 introduces the SeaStar2 
network chip to replace the original SeaStar. The SeaStar and 
SeaStar2 networks are link-compatible, meaning that Seastar and 
SeaStar2 NICs can co-exist on the same network. The SeaStar2 
increases the network injection bandwidth of each node from 
2.2GB/s to 4GB/s and increases the sustained network 
performance from 4GB/s to 6GB/s. This increased injection 
bandwidth corresponds with the increased memory bandwidth of 
DDR2 RAM. Our study demonstrates the overall impact of the 
combination of these new features on system balance in the XT4. 

Cray XT3/XT4 systems use CFS’s Lustre filesystem. Lustre is an 
object-based parallel filesystem, where one can think of an object 
as an inode in a traditional filesystem. A Lustre filesystem has one 
or more Object Storage Servers (OSSes), which handle interfacing 
between the client and the physical storage. Each OSS serves one 
or more Object Storage Targets (OSTs), where the file objects are 
stored to disk. The term “file striping” refers to the number of 
OSTs used to store a file. For example, if a file has a stripe count 
of four, then it is broken into objects and stored on four OSTs. 
The filesystem namespace is served by a Metadata Server (MDS). 
All metadata operations, including opens, file creation, etc., are 
handled by the MDS. At the time of writing, Lustre supports 
having just one MDS, which can cause a bottleneck in metadata 
operations at large scales. On the XT3/XT4 the MDS and OSSes 
are run on the Service and I/O (SIO) nodes, which run a full 
distribution of Linux. Compute-node access to Lustre is provided 
in the form of a statically linked library, “liblustre.” Figure 1 
below shows the architecture of Lustre on a Cray XT3/XT4 
system. 

 
Figure 1. Lustre filesystem architecture 

3. EVALUATION SYSTEM 

CONFIGURATION 
Results cited in this paper were collected on the Cray XT3/XT4 at 
the National Center for Computational Sciences (NCCS) sited at 
Oak Ridge National Laboratory (ORNL). This system consisted 
originally of 56 XT3 cabinets with 5,212 2.4GHz, single-core 
Opteron processors and 2GB DDR-400 RAM per node. In 2006, 
the system was upgraded to 2.6GHz, dual-core Opteron 



processors, and the memory was doubled to maintain the 
2GB/core level. During Winter 2006/2007, an additional 68 XT4 
cabinets were installed, containing 6,296 dual-core Revision F 
Opteron processors with 2GB/core of DDR2-667 RAM. At the 
time of writing, the XT3 and XT4 cabinets have been combined 
into one machine. Experiments on this combined system can be 
run using only XT3 or only XT4 nodes, and our evaluation is 
ongoing. As part of this evaluation, XT4 performance is compared 
both with the original XT3 system using single-core 2.4GHz 
Opteron processors and with the dual-core XT3 system when 
results are available. System details are summarized in Table 1. 
Other systems used for comparison include the IBM SP and IBM 
p575 clusters at the National Energy Research Scientific 
Computing Center (NERSC) sited at Lawrence Berkeley National 
Laboratory, the IBM p690 cluster at ORNL, the Cray X1E at the 
NCCS, and the Japanese Earth Simulator.  

Table 1. Comparison of XT3, XT3 dual core, and XT4 systems 

at ORNL 

 

Cray provides three compiler options on its XT4 supercomputers: 
the Portland Group compiler, the GNU Compiler Collection, and 
the PathScale compiler. Unless otherwise noted, results in this 
paper were obtained using the Portland Group v6.2 compilers 
with Message Passing ToolKit (MPT) v1.5 and scientific/math 
library functionality provided by Cray’s “libsci” library (which 
includes Cray FFT, LAPACK, and ScaLAPACK interfaces) and 
the AMD Core Math Library (ACML).  

The Lustre filesystem configuration went through three iterations 
during the course of our evaluation, as summarized in Table 2. 
The first configuration had a total of 96 OSTs over 48 OSSes. 
These were configured over 12 DDN-85001 controllers (also 
known as couplets) for eight OSTs per couplet connected to the 

                                                                 

1
 DDN stands for Data Direct Networks. 

storage back-end over 2Gb/s fibre channel. The theoretical peak 
performance of this filesystem was 2GB/s * 12 couplets = 24GB/s. 
Testing showed a practical peak performance closer to 16GB/s. 
During a short testing period, the filesystem was configured to 
160 OSTs over 80 OSS nodes connected to DDN-9550 disk 
controllers. This filesystem was reconfigured into the final 
incarnation, 144 OSTs over 72 OSSes connected to DDN-9550s 
via two 4Gb/s fibre channel cards per OSS. The disk controllers 
are configured with two “Tiers” per logical unit number (LUN), 
where a “Tier” is a DDN term for a 9 disk, 8+1 RAID array. The 
theoretical peak of the filesystem is 144*4Gb/s = 144*0.5GB/s = 
72GB/s. Based on experiments with the 96 OST Lustre filesystem 
[8], we expect the practical (achievable) peak bandwidth to be 
closer to two thirds of this number, or 48GB/s. It should be noted 
that Lustre I/O performance is a function of the filesystem 
configuration and not of the system architecture. Differences in 
performance between the filesystem configurations listed are due 
to the change in disk controllers, fibre channel links, and the 
number of disks available, not due to inherent differences between 
the Cray XT3 and XT4. 

Table 2. Lustre Filesystem Configurations 

 Config. 1 Config. 2 Config. 3 

Disk 
Contollers 

12 DDN-8500 
couplets 

20 DDN-9550 
Couplets 

18 DDN-9550 
Couplets 

OSSes 48 80 72 

OSTs 96 160 144 

Theoretical 
Peak 

24GB/s 80GB/s 72GB/s 

Practical 
Peak 

16GB/s 52GB/s 48GB/s 

4. METHODOLOGY 
Our system evaluation approach recognizes that application 
performance is the ultimate measure of system capability, but that 
understanding an application’s interaction with a system requires 
a detailed map of the performance of the system components. 
Thus, we begin with micro-benchmarks that measure processor, 
memory subsystem, network, and I/O capabilities of the system at 
a low level. We then use the insights gained from the micro-
benchmarks to guide and interpret the performance analysis of 
several key applications. 

5. MICRO-BENCHMARKS 

5.1 High Performance Computing Challenge 

Benchmark Suite 
The High Performance Computing Challenge (HPCC) benchmark 
suite [9][10][11][12] is composed of benchmarks measuring 
network performance, node-local performance, and global 
performance. Network performance is characterized by measuring 
the network latency and bandwidth for three communication 
patterns: naturally ordered ring, which represents an idealized 
analogue to nearest neighbor communication; randomly ordered 

ring, which represents non-local communication patterns; and 
point-to-point or ping-pong patterns, which exhibit low 

 XT3 XT3 Dual-
Core 

XT4 

Processor 2.4GHz 
single-core 

Opteron 

2.6GHz 
dual-core 
Opteron 

2.6GHz 
dual-core 
Opteron 

Processor 
Sockets 

5,212 5,212 6,296 

Processor 
Cores 

5,212 10,424 12,592 

Memory DDR-400 DDR-400 DDR2-667 

Memory 
Capacity 

2GB/core 2GB/core 2GB/core 

Memory 
Bandwidth 

6.4GB/s 6.4GB/s 10.6GB/s 

Interconnect Cray 
SeaStar 

Cray 
SeaStar 

Cray 
SeaStar2 

Network 
Injection 

Bandwidth 

2.2GB/s 2.2GB/s 4GB/s 



contention. The node local and global performance are 
characterized by considering four algorithm sets, which represent 
four combinations of minimal and maximal spatial and temporal 
locality: DGEMM/HPL for high temporal and spatial locality, 
FFT for high temporal and low spatial locality, Stream/Transpose 
(PTRANS) for low temporal and high spatial locality, and 
RandomAccess (RA) for low temporal and spatial locality. The 
performance of these four algorithm sets are measured in 
single/serial process mode (SP) in which only one processor is 
used, embarrassingly parallel mode (EP) in which all of the 
processors repeat the same computation in parallel without 
communicating, and global mode in which each processor 
provides a unique contribution to the overall computation 
requiring communication. XT4 results are compared to the 
original XT3 based on the 2.4GHz single core Opteron. 

5.1.1 Network latency and bandwidth 
Figure 2 shows that XT4 delivers roughly 4.5µs best case network 
latency in SN mode, an improvement over the single-core XT3’s 
order of 6µs latency. However, in VN mode access to the NIC can 
become a bottleneck, resulting in significantly higher network  
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Figure 2. Network latency 
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Figure 3. Network bandwidth 

latencies – approaching 18µs worst case network latency for 
larger configurations, though this can be expected to improve as 
the XT4 software stack matures. Figure 3 shows the XT4’s ping-
pong bandwidth has increased to just over 2GB/s vs. the XT3’s 
1.15GB/s – a result of nearly doubling the injection bandwidth 
due to SeaStar2’s improved handling of the HyperTransport link 
to the Opteron processor. Comparing XT4 SN mode to XT3 
across a broad range of problem sizes, the natural and random 
ring bandwidth has improved. In VN mode, XT4 also improves 

the natural and random ring bandwidth per socket relative to the 

XT3; however, the per core bandwidth in VN mode is slightly 

worse than the XT3.  

5.1.2 Compute node performance 
Comparing FFT results between XT3 and XT4-SN (Figure 4), we 
see the impact of a faster core (2.4GHz vs. 2.6GHz) and faster 
memory parts (DDR-400 vs. DDR2-667), which collectively 
account for a 25% performance improvement, largely attributable 
to the memory improvement. In the case of DGEMM, we observe 
that the XT4’s 2.6GHz cores deliver a small clock frequency 

driven improvement over the XT3’s 2.4GHz cores (Figure 5). 
Furthermore, we note that high-temporal-locality memory access 

patterns of both FFT and DGEMM suffer little degradation in the 
per-core performance when both cores are active, and are thus 
relatively immune to the potential performance impacts of sharing 
one memory controller between two cores. The RA benchmark 
(Figure 6) demonstrates that multi-core is not a universal answer 
to processor performance requirements. The XT4 SP mode RA 
results demonstrate improvement over XT3 due to a slightly faster 
processor and faster memory clock speed. However, in EP mode 
we see that the per-core RA performance is half of the SP value – 
falling behind the per-core XT3 result due to an essentially 
unscaled memory subsystem, resulting in the same per-socket RA 
performance regardless of whether one or both cores are active. 
The Stream results (Figure 7) are similar in that the faster memory 
parts and faster processor improve the per-socket performance 
over XT3, but that utilizing the second core offers little 
improvement over just one core for problems with high spatial 
locality but low temporal locality. 
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Figure 4. SP/EP Fast Fourier Transform (FFT) 
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Figure 5. SP/EP Matrix Multiply (DGEMM) 
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Figure 6. SP/EP Random Access (RA) 
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Figure 7. SP/EP Memory Bandwidth (Streams) 

5.1.3 Global benchmarks 
Like DGEMM, HPL demonstrates the promise of multi-core 
(Figure 8). On a per-core basis, the XT4 demonstrates nearly 

clock-frequency-proportional speed-up over XT3 in both SN and 

VN modes. Moreover, on a per-socket basis, XT4 shows 

significant improvement over XT3. Based on the SP/EP FFT 
results, one might expect MPI-FFT to behave similarly to 
DGEMM and HPL; however, the results (Figure 9) are somewhat 

different. MPI-FFT on XT4 is faster than XT3 on a per-socket 

basis for either SN or VN mode, but on a per-core basis, VN 

mode performs much worse. This can be attributed to the NIC 
bottleneck which results from the current NIC sharing 
arrangement in VN mode. Again, we expect that this will improve 
as the XT4 software stack matures, particularly with respect to 
more efficient multi-core utilization of the NIC and protocol 
offload onto the SeaStar2’s PPC core. As with Streams, the 
bandwidth-sensitive PTRANS benchmark (Figure 10) shows that 
multi-core is not a panacea. On the contrary, the PTRANS 
performance per socket for the XT4 vs. XT3 is essentially 
unchanged, falling within typical variances for PTRANS due to 
job layout topology. This is a function of the SeaStar-to-SeaStar 
interconnection link bandwidth which did not change from XT3 
to XT4. Furthermore, the depiction of the per-core VN mode 
results demonstrate that network injection bandwidth 
improvements had little effect in the case of PTRANS. Like 
Streams, algorithms dominated by spatial locality see little 
improvement, if any, over the XT3. Finally, the MPI-RA 
benchmark (Figure 11) demonstrates the negative impact of 
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Figure 8. Global High Performance LINPACK (HPL) 
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Figure 9. Global Fast Fourier Transform (MPI-FFT) 
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Figure 10. Global Matrix Transpose (PTRANS) 
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Figure 11. Global Random Access (MPI-RA) 



multiple cores – here XT4’s SN mode shows a slight 
improvement over XT3 due to a convergence of three factors: 
core frequency, memory bandwidth/latency, and network injection 

bandwidth/latency. In contrast, VN mode XT4 is slower both per-

core and per-socket than XT3 (and SN mode XT4) due to the 

increased network latency of VN mode that overwhelms all other 
factors, resulting in overall poorer performance. Latency 
improvements to the VN mode NIC sharing will directly impact 
this result. 

5.2 Bidirectional Latency and Bandwidth 
To provide additional detail on MPI communication performance, 
data from two additional experiments were collected. The first 
experiment measures the bidirectional bandwidth for a single pair 
of MPI tasks when the two tasks are assigned to cores in different 
compute nodes (“0-1 internode”). The second experiment 
measures the worst case bidirectional bandwidth for two pairs of 
MPI tasks when two tasks in one node are exchanging data with 
two tasks in a different node simultaneously (“i-(i+2), i=0,1 
(VN)”). Figure 12 and Figure 13 are plots of the MPI  
 

 

Figure 12. Bidirectional MPI bandwidth 

 

 

Figure 13. Bidirectional MPI bandwidth 

bidirectional bandwidth as a function of message size, where 
Figure 12 uses a log-log scale to emphasize the performance for 
small message sizes and Figure 13 uses a log-linear scale to 
emphasize the performance for large message sizes. From these 
data, the dual-core XT4 bidirectional bandwidth is at least 1.8 
times that of the dual-core XT3 for message sizes over 100,000 
Bytes. For large messages, the two-pair experiments achieve 
exactly half the per pair bidirectional bandwidth as the single-pair 
experiments, representing identical compute node bandwidths. 
Bandwidth for the single-core XT3 lags that of the dual-core XT3 
for all but the largest messages, but it achieves the same peak 
performance. For small message sizes, dual-core XT3 
performance and dual-core XT4 performance are identical. 
However, latency for the two-pair experiments on the dual-core 
systems is over twice that of the single-pair experiments. This 
sensitivity of MPI latency to simultaneous communication by both 
cores will be evident in some of the application benchmark 
results. Finally, single-core XT3 latency is much worse than that 
on the dual-core systems. However, data for the single-core 
experiments were collected more than two years ago, and the 
performance differences are likely to be, at least partly, due to 
changes in the system software. 

5.3 I/O Benchmark Suite 
This section contains I/O performance data for both serial and 
parallel tests using three different benchmark codes. I/O 
performance is studied independently of applications because 
there is no standard method to do I/O across codes or even within 
a code. In fact, application benchmarks with I/O turned on can 
often over emphasize the I/O requirements. Instead, here we 
attempt to understand some basic characteristics of the XT4 
filesystem with relatively simple benchmarks. For all tests, the 
Lustre filesystem stripe sizes and stripe counts were set using the 
“lfs setstripe” command prior to running the benchmarks. 

5.3.1 CustomIO1  
Figure 14-Figure 22 contain data generated by a custom code, 

CustomIO1 [13]. This code is a very simple, buffered, single-file 

MPI-I/O write benchmark that was designed to model the I/O 
pattern of a climate application. More specifically, the benchmark 
models the behavior of exporting a large amount of data from 
memory to disk efficiently, as would be done in checkpointing. 
The original version of the benchmark assigned a subset of the 
available tasks to act as writers and opened an MPI file over that 
subset of writers, but it was determined that the communication 
portion of this test was negligible. The benchmark version we 
used opens a file across all tasks, but in task counts comparable to 
the expected number of writers for large program runs. Each 
writer in the benchmark uses the mpi_write_at method to write 
data to an offset in the shared file. These results were generated 
on a Cray XT4, using luster-ss/1.5.31, configured with 160 OSTs. 

First, the I/O performance when using one task was studied. Since 
this is a fairly common practice in parallel applications, it is 
worthwhile to investigate the performance. Figure 14 and Figure 
15 show the effect of buffer size on performance. Figure 14 has a 
single stripe, but varies buffer sizes and stripe sizes. Here, the 
maximum performance is 300MB/s. Figure 15 has the striping 
count fixed at 160, but varies stripe size and the I/O buffer on the 
x- and y-axes. Varying the I/O buffer size produces the most 



1
0
K

1
M 3

0
M

6
4
K

1
9
2
K

6
4
0
K

1
9
2
0
K

6
.4

M

1
9
.2

M

0.E+00

1.E+08

2.E+08

3.E+08

4.E+08

5.E+08

6.E+08

b
a
n

d
w

id
th

buffer 

size
stripe size

 

Figure 14. CustomIO1, 1 node, 1 stripe 
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Figure 15. CustomIO1, 1 node, 160 stripes 
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Figure 16. CustomIO1, 1 node, 10MB buffer 
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Figure 17. CustomIO1, 50 writers, 1M buffer  
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Figure 18. CustomIO1, 50 writers, 10M buffer  
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Figure 19. CustomIO1, 50 writers, 100M buffer 
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Figure 20. CustomIO1, 20 writers, 150 stripes 
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Figure 21. CustomIO1, 50 writers, 150 stripes 
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Figure 22. CustomIO1, 100 writers, 150 stripes 

 

pronounced effect, and at the maximum buffer size, the bandwidth 
is observed to be 600MB/s. Figure 16 shows performance as the 
number of stripes, and the stripe sizes change when writing out a 
constant 10MB buffer. Performance reached a maximum of 
around 500MB/s. The bandwidth quickly climbs from 
approximately 300MB/s with a stripe count of one to 500MB/s 
with a stripe count around 20 and stays there up to a stripe count 
of 150. For a constant 100MB buffer (data not shown), the 
maximum crests around 600MB/s. Together, these numbers 
indicate that when using one I/O task, a code cannot take 
advantage of a large Lustre filesystem, as would be expected. 
Furthermore, stripe counts greater than one have a positive effect, 
but only up to a relatively small amount, around 10-20%. On the 
other hand, stripe size is essentially irrelevant in this scenario, 
except when the stripe size is set too large. 

The effect of buffer size, stripe size, and stripe count in parallel 
I/O scenarios were investigated again using the CustomIO1 
micro-benchmark. Figure 17-Figure 19 show bandwidth rates 
when using 50 writers, but varying the aforementioned 
dimensions. Again, larger I/O buffers result in better performance 
and increasing the stripe count improves performance for large 
writes. Figure 20-Figure 22 show data for a fixed stripe count of 
150, varying the number of writes, the stripe size, and the buffer 
sizes to demonstrate the importance of buffer size, and also the 
importance of “having enough writers.” The results indicate that 
reasonable I/O rates may be achieved through the obvious 
approaches of using a buffer size of at least 1-10MB and striping 
across a large portion of the available OSTs, but also less 
obviously that a sufficient number of I/O nodes must be used to 
sustain high performance. 

5.3.2 IOR 
The IOR Benchmark [14] tests were run in a non-dedicated mode, 

and all were performed using the MPI I/O mode (rather than 
POSIX or HDF5 modes) with luster-ss/1.5.31 and 144 OSTs. 
Figure 23-Figure 26 show “scaling” results from IOR – that is, 
I/O bandwidth rates from IOR as the number of tasks 
(writers/readers) increases on the x-axis. Figure 23 and Figure 24 
show the I/O performance as the size per task was kept constant 
and the number of tasks increased. In particular, Figure 23 shows 
the results for one file per task, while Figure 24 shows the 
performance for a single-shared file. The maximum bandwidth 
rates achieved were 42GB/s and 34GB/s for one file per task and 
one single-shared file, respectively, which are shy of the 
theoretical 72GB/s peak. Figure 25 and Figure 26 show the 
bandwidth rates as the aggregate IO size is kept constant at 64GB 
for one file per task and a single-shared file, respectively. The 
maximum achieved rates are very similar to those above at 
40GB/s and 37GB/s for one file per task and a single-shared file, 
respectively. As before, the maximum performance was achieved 
with the number of tasks in the range of 500 to 2000. Based on 
these data, it seems clear that using a subset of the application 
tasks for I/O will result in better overall I/O performance at scale. 
We do not know why the performance eventually decreases down 
to an asymptotic level – the same for both read and write. It would 
certainly be of interest to know why, and if possible, keep the 
performance at its maximum level so users of the XT systems 
would not have to do anything special to avoid the performance 
degradation, or modify their codes to work around the issue as 
done in the next section. The performance when doing I/O to a  
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Figure 23. IOR, file per core MPI-IO, XT4-VN 
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Figure 24. IOR, shared file MPI-IO, XT4-VN, 143 stripes 
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Figure 25. IOR, file per task MPI-IO, XT4-VN, 

constant total IO of 64GB 
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Figure 26. IOR, shared file MPI-IO, XT4-VN, 

constant total IO of 64GB 

shared file and to a file per task are somewhat qualitatively 
different, but the difference is not large enough that it should 
change how users run on a Lustre filesystem. 

5.3.3 CustomIO2  
Based on the results above, we investigated the idea of using a 
subset of MPI tasks to do the I/O for an entire application. This 
was another custom Fortran code, CustomIO2 [15] designed to 
write out contiguous buffers by each process either to a single-
shared file or, alternatively, to a file per process. Furthermore, this 
code was designed to take in runtime parameters to define a 
subset of processes with which to do I/O, and, in addition, to use 
one of several methods of moving the data to the subset of 
processes to do the I/O (the author was not aware of this 
functionality being available in any standard I/O package). The 
intent (as with CustomIO1) was to model the behavior of writing 
a large amount of data to disk, as in a checkpoint. Although there 
are only a few results to date, they do confirm our theory. 

This first test was run on an XT3 system with a 96 OST Lustre 
filesystem running luster-ss/1.5.29 – this filesystem no longer 
exists. Tests were performed with 8,640 cores (on a dual-core 
machine) where each task had a 5MB buffer to write out. When 
all tasks wrote to their own file, the effective bandwidth was 
1.4GB/s. Reads were 2.0GB/s. Then, a subset of 960 tasks out of 
the 8,640 tasks was used to do I/O (all the buffer data was 
aggregated onto the I/O tasks before writing). In this case, the 
effective write bandwidth was 10.1GB/s and the read bandwidth 
was 10.3GB/s.  

The second test was run on an XT4 system with 144 OSTs 
running luster-ss/1.5.31. The tasks had an 8MB buffer. The test 
was to compare 9,216 tasks writing out 8MB each versus 1,024 
tasks writing out the aggregated data from nine tasks. With all 
9,216 tasks writing, the bandwidth was 0.6GB/s, but using a 1,024 
task subset for I/O achieved 10.4GB/s – a 17x improvement. 
These tests provide early evidence that using a subset of tasks for 
I/O produces significantly better performance than when using all 
the available cores. 

6. APPLICATION BENCHMARKS 
The following application benchmarks are drawn from the current 
NCCS workload. These codes are large with complex 
performance characteristics and numerous production 
configurations that cannot be captured or characterized adequately 
in the current study. The intent is, rather, to provide a qualitative 
view of system performance using these benchmarks. In 
particular, despite the importance, I/O performance is explicitly 
ignored in these application benchmarks for the practical reason 
that I/O would be overemphasized in the relatively short, but 
numerous, benchmark runs that we employed in this study. 

6.1 Atmospheric Modeling 
The Community Atmosphere Model (CAM) is a global 
atmosphere circulation model developed at the National Science 
Foundation’s National Center for Atmospheric Research (NCAR) 
with contributions from researchers funded by the Department of 
Energy (DOE) and by the National Aeronautics and Space 
Administration [16][17]. CAM is used in both weather and 
climate research. In particular, CAM serves as the atmosphere 



component of the Community Climate System Model (CCSM) 
[18][19].  

For this evaluation, we ported and optimized CAM version 3.1 
(available for download from the CCSM website at 
http://www.ccsm.ucar.edu/) as described in [20]. CAM is a 
mixed-mode parallel application code using both MPI and 
OpenMP protocols [21]. CAM’s performance is characterized by 
two phases: “dynamics” and “physics.” The dynamics phase 
advances the evolution equations for the atmospheric flow, while 
the physics phase approximates subgrid phenomena, including 
precipitation processes, clouds, long- and short-wave radiation, 
and turbulent mixing [16]. Control moves between the dynamics 
and the physics at least once during each model simulation 
timestep. The number and order of these transitions depend on the 
configuration of numerical algorithm for the dynamics.  

CAM implements three dynamical cores (dycores), one of which 

is selected at compile-time: a spectral Eulerian solver [22], a 

spectral semi-Lagrangian solver [23], and a finite volume semi-

Lagrangian solver [24]. Our benchmark problem is based on 

using the finite volume (FV) dycore over a 361×576 horizontal 
computational grid with 26 vertical levels. This resolution is 
referred to as the “D-grid,” and while it is greater than that used in 
current computational climate experiments, it represents a 
resolution of interest for future experiments. The FV dycore 
supports both a one-dimensional (1D) latitude decomposition and 
a two-dimensional (2D) decomposition of the computational grid. 
The 2D decomposition is over latitude and longitude during one 
phase of the dynamics and over latitude and the vertical in another 
phase, requiring two remaps of the domain decomposition each 
timestep. For small processor counts, the 1D decomposition is 
faster than the 2D decomposition, but the 1D decomposition must 
have at least three latitudes per MPI task and so is limited to a 
maximum of 120 MPI tasks for the D-grid benchmark. Using a 
2D decomposition requires at least three latitudes and three 
vertical layers per MPI task, so is limited to 120×8, or 960, MPI 
tasks for the D-grid benchmark. OpenMP can also be used to 
exploit multiple processors per MPI task. While OpenMP 
parallelism is used on the Earth Simulator and IBM systems for 
the results described in Figure 28, it is not used on the Cray 
systems. 

 

Figure 27. CAM throughput on XT4 vs. XT3 

Figure 27 is a comparison of CAM throughput for the D-grid 
benchmark problem on the single-core XT3 and on the dual-core 
XT3 and XT4. Comparing throughput between the single-core 
XT3 and the dual-core XT3 and XT4 when running in SN mode, 
the impact of the improved processor, memory, and network 
performance is clear, though software improvements may also 
play a role in the performance differences between the single-core 
and dual-core XT3 results. Comparing performance between the 
dual-core XT3 and XT4 when running in VN mode demonstrates 
a similar performance improvement due to the higher memory 
performance and network injection bandwidth for the XT4. As 
indicated in the micro-benchmarks, contention for memory and 
for network access can degrade performance in VN mode as 
compared to SN mode, on a per task basis. However, SN mode is 
“wasting” as many processor cores as it is using, so the 10% 
improvement in throughput compared to VN mode comes at a 
significant cost in computer resources. For example, comparing 
performance using 504 MPI tasks in SN mode with using 960 
MPI tasks in VN mode, thus using approximately the same 
number of compute nodes, VN mode achieves approximately 30% 
better throughput.  

 

Figure 28. CAM throughput on XT4 relative to  

previous results 

Figure 28 compares CAM throughput for the D-grid benchmark 
problem for the Cray XT4 and for the following systems:  

• Cray X1E at ORNL: 1024 Multi-Streaming Processors (MSP), 
each capable of 18GFlop/s for 64-bit operations. MSPs are fully 
connected within 32-MSP subsets, and are connected via a 2D 
torus between subsets.  

• Earth Simulator: 640 8-way vector SMP nodes and a 640x640 
single-stage crossbar interconnect. Each vector processor is 
capable of 8GFlop/s for 64-bit operations. 

• IBM p690 cluster at ORNL: 27 32-way p690 SMP nodes and an 
HPS interconnect. Each node has two HPS adapters, each with 
two ports. Each processor is a 1.3GHz POWER4 and is capable of 
5.2GFlop/s for 64-bit operations.  

• IBM p575 cluster at NERSC: 122 8-way p575 SMP nodes and 
an HPS interconnect with one two-link adapter per node. Each 
processor is a 1.9GHz POWER5 and is capable of 7.6GFlop/s for 
64-bit operations.  



• IBM SP at NERSC: 184 Nighthawk II 16-way SMP nodes and 
an SP Switch2. Each node has two interconnect interfaces. Each 
processor is a 375MHz POWER3-II and is capable of 1.5GFlop/s 
for 64-bit operations.  

Each data point in Figure 28 represents the performance on the 
given platform for the given processor count after optimizing over 
the available virtual processor grids defining the domain 
decomposition and after optimizing over the number of OpenMP 
threads per MPI task. For the D-grid benchmark, SN and VN 
mode XT4 performance brackets that of the IBM p575 cluster. 
Note that at 960 processors, vector lengths have fallen below 128 
for important computational kernels, limiting performance on the 
vector systems.  

 

Figure 29. CAM performance by computational phase 

Figure 29 is a plot of the wall clock seconds per simulation day 
for the dynamics and for the physics for the XT4, SN and VN 
modes, and for the p575 cluster. The dynamics is approximately 
twice the cost of the physics for this problem and dycore. The 
physics costs for the p575 cluster and the dual-core XT4 are 
similar up through 504 processors. The IBM and Cray systems 
also have qualitatively similar performance for the dynamics, but 
the fact that the IBM uses OpenMP makes it difficult to compare 
performance details between the systems. Comparing XT4 
performance in SN and VN modes, 70% of the difference in the 
physics for high task counts is due to the difference in time 
required in the MPI_Alltoallv calls used to load balance the 
physics and to communicate with the imbedded land model. 
Similarly, much of the performance difference between SN mode 
and VN mode performance in the dynamics occurs in the MPI 
communication in the remap between the two 2D domain 
decompositions. These results agree qualitatively with those from 
the micro-benchmarks when comparing MPI performance in SN 
and VN modes, with the same expectation that the difference in 
performance will decrease as the software stack matures. OpenMP 
is also expected to provide a performance enhancement when it 
becomes available on the XT4 by allowing fewer MPI tasks to be 
used and by allowing us to restrict MPI communication to a single 
core per node.  

In summary, CAM performs and scales well on the XT4 within 
the limits of its domain decomposition. The performance 
advantage of SN over VN mode for large MPI task counts is 
primarily due to degraded MPI performance when running in VN 

mode, as previously observed in the micro-benchmarks. XT4-
specific MPI optimizations are being investigated to ameliorate 
this performance loss. OpenMP will also provide a method to 
work around this limitation, as well as to improve algorithmic 
scalability.  

6.2 Ocean Modeling 
The Parallel Ocean Program (POP) [25] is a global ocean 
circulation model developed and maintained at Los Alamos 
National Laboratory. POP is used for high-resolution studies and 
as the ocean component in the CCSM. The code is based on a 
finite-difference formulation of the three-dimensional (3D) flow 
equations on a shifted polar grid. POP performance is 
characterized by the performance of a “baroclinic phase” and a 
“barotropic phase.” The 3D baroclinic phase scales well on all 
platforms due to its limited nearest-neighbor communication. In 
contrast, the barotropic phase is dominated by the solution of a 
2D, implicit system, whose performance is very sensitive to 
network latency and typically scales poorly on all platforms.  

For our evaluation, we used version 1.4.3 of POP with a few 
additional parallel-algorithm tuning options [26], utilizing 
historical performance data based on this version to provide a 
context for the current results. The current production version of 
POP is version 2.0.1. While version 1.4.3 and version 2.0.1 have 
similar performance characteristics, the intent here is to use 
version 1.4.3 to evaluate system performance, not to evaluate the 
performance of POP.  

We consider results for the 1/10-degree benchmark problem, 
referred to as “0.1.” The pole of the latitude-longitude grid is 
shifted into Greenland to avoid computations near the singular 
pole point. The grid resolution is 1/10 degree (10km) around the 
equator, increasing to 2.5km near the poles, utilizing a 3600x2400 
horizontal grid and 40 vertical levels. This grid resolution resolves 
eddies for effective heat transport and is used for ocean-only or 
ocean and sea-ice experiments.  

 

Figure 30. POP throughput on XT4 vs. XT3 

Figure 30 is a comparison of POP throughput for the 0.1 
benchmark problem on the single-core XT3 and on the dual-core 
XT3 and XT4. As with CAM, we see a performance advantage to 
running on the XT4 compared to the XT3 and to running with SN 
mode compared to VN mode (for the same MPI task count). 
Unlike CAM, this POP benchmark can use the whole system, and 



the advantage in system throughput of using both processor cores 
instead of just one is significant. For example, the 5,000 task SN 
mode results use the same number of compute nodes as the 
10,000 task VN mode results, and using both cores improves 
throughput by 40%.  

Note that the increase in processor speed when going from the 
single-core to dual-core XT3 did not improve performance 
measurably. The increase in memory and network performance 
had somewhat more impact for this benchmark, but at large MPI 
task counts performance is latency sensitive, and MPI latency is 
essentially the same on the XT3 and XT4 as indicated by the 
micro-benchmarks. 

 

Figure 31. POP throughput on XT4 relative to  

previous results 

 

Figure 32. POP performance by computational phase 

Figure 31 is a platform comparison of POP throughput for the 0.1 
benchmark problem. On the Cray X1E we used a version of POP 

that uses a Co-Array Fortran [27] implementation of a 

performance-sensitive halo update operation. All other results 
were for MPI-only versions of POP. For the XT results, we used 
all XT4 compute nodes through 5,000 MPI tasks in SN mode and 
10,000 MPI tasks in VN mode, and used a mix of XT3 and XT4 
compute nodes for larger MPI task counts. We also include 
performance for runs with a version of 1.4.3 in which we have 
backported an algorithmic improvement available in version 2.1 
of POP. This modified version uses the Chronopoulos-Gear (C-G) 

variant of the conjugate-gradient algorithm used to solve the 

linear system in the barotropic phase [28]. C-G requires half the 

number of calls to MPI_Allreduce (to calculate inner products) 
compared to the standard MPI implementation of conjugate 
gradient. This latter performance will be more representative of 
production POP performance in the future. As shown, decreasing 
the number of MPI_Allreduce calls improves POP performance 
significantly. 

Figure 32 shows the XT performance of both the baroclinic and 
the barotropic phases (time per simulation day in seconds) for 
both SN and VN modes and for VN mode when using the C-G 
algorithm. Note that the barotropic performance is relatively flat 
and is the dominant cost for large numbers of MPI tasks. While 
SN mode performance is somewhat better than VN mode 
performance for a fixed number of tasks for the computation-
bound baroclinic phase, using VN mode for the baroclinic is 
much more efficient in terms of compute nodes. The same is not 
true for the barotropic phase. To further improve POP 
performance on the XT4 will require improving the performance 
of the MPI_Allreduce employed in the conjugate-gradient 
algorithm used in the barotropic phase or reducing the number of 
MPI_Allreduce calls required. C-G takes this latter approach. 
More-efficient pre-conditioners, to decrease the number of 
iterations required by conjugate gradient to solve the linear 
system, are also being examined. It is worth noting that the VN 
mode performance of the Cray-supplied MPI_Allreduce improved 
significantly recently, eliminating much of the contention between 
the processor cores. This optimization is reflected in the data here. 
Additional VN optimization is feasible, as there is little reason for 
latency-dominated collectives to run significantly slower in VN 
mode than in SN mode. The VN mode performance variability in 
the barotropic phase apparent in Figure 32 also indicates the 
possibility for further performance improvements.  

In summary, the 0.1-degree POP benchmark scales very well on 
the XT4, achieving excellent performance out to 22,000 MPI 
tasks. The performance analysis indicates that performance will 
not scale further unless the cost of the conjugate-gradient 
algorithm used in the barotropic phase can be further decreased. 
Both algorithmic and MPI collective optimizations are currently 
being investigated for this purpose.  

6.3 Biomolecular Simulations 
Nanoscale Molecular Dynamics (NAMD) is a scalable, object-
oriented molecular dynamics (MD) application designed for 
simulation of large biomolecular systems [29]. It employs the 
prioritized message-driven execution model of the 
Charm++/Converse parallel runtime system, in which collections 
of C++ objects remotely invoke methods on other objects with 
messages, allowing parallel scaling on both MPP supercomputers 
and workstation clusters [30]. 

Biomolecular simulation improves our understanding of novel 
biochemical functions and essential life processes. Biomolecular 
problems are computationally difficult, engendering high 
complexity and time scales spanning more than 15 orders of 
magnitude to represent the dynamics and functions of 
biomolecules. Biomolecular simulations are based on the 
principles of molecular dynamics (MD), which model the time 
evolution of a wide variety of complex chemical problems as a set 
of interacting particles, simulated by integrating the equations of 



motion defined by classical mechanics — most notably Newton’s 

second law, ∑F=ma. Several commercial and open source MD 

software frameworks are in use by a large community of 
biologists, and differ primarily in the form of their potential 
functions and force-field parameters.  
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Figure 33. NAMD performance on XT4 vs. XT3 
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Figure 34. NAMD performance impact of SN vs. VN 

We consider two representative petascale biological systems with 
approximately one- and three-million atoms respectively. The 
simulation performance is measured in time per simulation step, 
which should theoretically decrease as processing units are added. 
Figure 33 shows comparisons of XT3 and XT4 performance for 
both the ~1M and ~3M atom simulations. Using the XT3 and 
XT4 systems in VN mode, the 1M atom simulations scale to 
8,192 cores and achieve ~9ms/step, while the 3M atom 
simulations scale to 12,000 XT4 cores, sustaining ~12ms/step 
performance. Note that the Blue Gene/L system with 16K 
processing cores reported ~10ms/step for a simulation of 

approximately 300K atoms [30]. Unlike the Blue Gene/L runs, 

however, no system specific optimization and instrumentation is 
applied for the XT3 and XT4 simulation experiments. The scaling 
for 1M atom system is restricted by the size of underlying FFT 
grid computations. Since the MD simulations are predominantly 
compute-intensive, overall the simulation runs on the XT4 system 
offer an order of 5% performance gain over the XT3 system. 

Figure 34 illustrates the impact of SN and VN execution modes 
on NAMD performance on the XT4 system. Again, there is very 
little impact, order of 10% or less, attributable to using the second 
core. Nevertheless, the increased communication requirements for 
simulation runs with a large number of MPI tasks result in 
relatively large increases in runtime in the VN mode as compared 
to the SN mode. 

6.4 Turbulent Combustion 
Direct numerical simulation (DNS) of turbulent combustion 
provides fundamental insight into the coupling between fluid 
dynamics, chemistry, and molecular transport in reacting flows. 
S3D is a massively parallel DNS solver developed at Sandia 
National Laboratories. S3D solves the full compressible Navier-
Stokes, total energy, species, and mass continuity equations 
coupled with detailed chemistry. It is based on a high-order 
accurate, non-dissipative numerical scheme and has been used 
extensively to investigate fundamental turbulent chemistry 
interactions in combustion problems including auto-ignition [31], 
premixed flames [32], and non-premixed flames [33]. 

The governing equations are solved on a conventional 3D 
structured Cartesian mesh. The code is parallelized using a 3D 
domain decomposition and MPI communication. Spatial 
differentiation is achieved through eighth-order finite differences 
along with tenth-order filters to damp any spurious oscillations in 
the solution. The differentiation and filtering require nine and 
eleven point centered stencils, respectively. Ghost zones are 
constructed at the task boundaries by non-blocking MPI 
communication among nearest neighbors in the 3D 
decomposition. Time advance is achieved through a six-stage, 
fourth-order explicit Runge-Kutta (R-K) method [34].  
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Figure 35. S3D parallel performance 

S3D’s key performance metric is computation time (in core hours) 
required per grid point per time-step for a given architecture and 
processor count. A lower simulation time will allow an increased 
grid size and/or a larger number of time steps, both of which 
allow the simulation of higher Reynolds number regimes, more 
complete temporal development of the solution, and larger 
statistical sample sets for greater accuracy and confidence. Figure 
35 shows the execution time and parallel performance of S3D 
obtained from a weak scaling test using 503 grid points per MPI 



task. In VN mode, S3D shows good performance even at very 
high processor counts. This is because the algorithm requires 
parallel communication only among nearest neighbors. 
(Collective communication is required only for diagnostics and 
runtime monitoring and, hence, does not significantly influence 
the parallel performance.) A comparison of a single MPI task (SN 
mode) and two MPI tasks (VN mode) shows an increase in 
execution time of roughly 30% on both XT3 and XT4 
architectures. However, a single MPI task (SN mode) and two 
MPI tasks (SN mode) have the same execution time. Therefore, 
the role of MPI communication overhead can be ruled out and the 
30% increase in execution time can be attributed to memory 
bandwidth contention between cores identified previously in the 
micro-benchmarks section.  

6.5 Fusion 
The two- and three-dimensional all-orders spectral algorithms 
(AORSA) code [35] is a full-wave model for radio frequency 
heating of plasmas in fusion energy devices such as ITER, the 
international fusion energy project. AORSA operates on a spatial 
mesh, with the resulting set of linear equations solved for the 
Fourier coefficients. A Fast Fourier Transform algorithm converts 
the problem to a frequency space, resulting in a dense, complex-
valued linear system. 
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Figure 36. AORSA Parallel performance 

As previously reported [3], AORSA was able to run at 
unprecedented scales on the XT3, allowing researchers to conduct 
experiments at resolutions previously unattainable. For example, 
preliminary calculations using 4,096 processors allowed the first 
simulations of mode conversion in ITER. The solution of the 
linear system using ScaLAPACK realized 10.56TFLOPS. Ported 
to the dual-core version of the XT3, this improved to 
11.0TFLOPS, and with the upgrade to XT4, this increased yet 
again, to 11.8TFLOPS. 

Recently configured for use with HPL [36], locally modified for 
use with complex coefficients [37] and linked with the Goto 
BLAS [38], the linear solver now achieves 16.7TFLOPS on 4,096 
cores (78.4% of peak). Strong scaling results, up to 22,500 cores, 
are shown in Figure 36. Although HPL yields only 65% of peak 
on 22,500 cores (75.6TFLOPS) for this problem, when operating 
on a larger grid (500x500, which cannot be run on fewer than 16k 
cores), performance improves to 87.5TFLOPS (74.8% of peak). 

Even larger problems are being configured which should again 
increase performance. 

7. DISCUSSION AND SUMMARY 
We presented an evaluation of the Cray XT4 using micro-
benchmarks to develop a controlled understanding of individual 
system components, providing the context for analyzing and 
comprehending the performance of several petascale ready 
applications. Inter-comparing the micro-benchmark results from 
DGEMM, FFT, RA, and Stream, we see an important trend: 
additional cores provide a performance improvement for 
algorithms that exhibit high degrees of temporal locality (nearly 
doubling performance for this dual-core case), but they provide 
little benefit for codes which exhibit poor temporal locality. 
Spatial locality provides only limited benefit since a single core 
can essentially saturate the off-socket memory bandwidth. 
Overall, relative to the XT3, the multi-core XT4 will perform 
better on those codes that exhibit a high degrees of temporal 
locality. The application results validate the micro-benchmark 
data collected on the XT3 and XT4 systems. For instance, the 
XT4 system outperforms the XT3 system for the micro-turbulence 
application, which exhibit high-degree of data locality. However, 
as observed in the communication micro-benchmarks, 
applications should rely on larger (potentially aggregated) 
messages for their communication to avoid the potential pitfalls of 
sensitivity to high MPI latencies when utilizing the second core, 
and even this is no guarantee that MPI performance in VN mode 
will not be degraded compared to SN mode. For codes that exhibit 
low degrees of temporal locality, XT4 may be best deployed in 
SN mode and may provide only a modest improvement over the 
XT3. For system I/O, our testing clearly suggests that better 
performance is achieved with: (a) I/O buffers larger than 1MB, (b) 
striping when writing large files (100MB or larger), (c) enough 
I/O nodes (at least as many as the number of OSTs) to saturate the 
Lustre filesystem, and (d) limits the number of I/O nodes 
(subsetting) rather than using all cores when running at scale. In 
conclusion, the system balance offered by the Cray XT series 
system results in higher scalability for message-passing scientific 
applications across multiple domains, though the immature 
software stack currently penalizes applications which are latency 
sensitive. In the future, we plan to investigate the impact of multi-
core devices in the Cray MPP systems and subsequently parallel 
programming models for petascale scientific applications.  
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